geometric periodicity - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

geometric periodicity - translation to ρωσικά

THEOREM ON HOMOTOPY GROUPS
Bott periodicity; Bott element; Bott's periodicity theorem

geometric periodicity      

математика

геометрическая периодичность

geometrical progression         
SEQUENCE OF NUMBERS WHERE EACH TERM IS FOUND BY MULTIPLYING THE PREVIOUS ONE BY A FIXED, NON-ZERO NUMBER
Geometric Progression; Larn-1; Geometric sequences; Geometrical progression; Geometric sequence; Finite geometric series

общая лексика

геометрическая прогрессия

geometrical progression         
SEQUENCE OF NUMBERS WHERE EACH TERM IS FOUND BY MULTIPLYING THE PREVIOUS ONE BY A FIXED, NON-ZERO NUMBER
Geometric Progression; Larn-1; Geometric sequences; Geometrical progression; Geometric sequence; Finite geometric series
геометрическая прогрессия

Ορισμός

geometric progression
(also geometric series)
¦ noun a sequence of numbers with a constant ratio between each number and the one before (e.g. 1, 3, 9, 27, 81).

Βικιπαίδεια

Bott periodicity theorem

In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by Raoul Bott (1957, 1959), which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory.

There are corresponding period-8 phenomena for the matching theories, (real) KO-theory and (quaternionic) KSp-theory, associated to the real orthogonal group and the quaternionic symplectic group, respectively. The J-homomorphism is a homomorphism from the homotopy groups of orthogonal groups to stable homotopy groups of spheres, which causes the period 8 Bott periodicity to be visible in the stable homotopy groups of spheres.

Μετάφραση του &#39geometric periodicity&#39 σε Ρωσικά